The Fesenko groups have finite width
نویسندگان
چکیده
منابع مشابه
Finite groups have even more centralizers
For a finite group $G$, let $Cent(G)$ denote the set of centralizers of single elements of $G$. In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent, then $Gcong S_3, D_{10}$ or $S_3times S_3$. This result gives a partial and positive answer to a conjecture raised by A. R. Ashrafi [On finite groups with a given number of centralizers, Algebra Collo...
متن کاملfinite groups have even more centralizers
for a finite group $g$, let $cent(g)$ denote the set of centralizers of single elements of $g$. in this note we prove that if $|g|leq frac{3}{2}|cent(g)|$ and $g$ is 2-nilpotent, then $gcong s_3, d_{10}$ or $s_3times s_3$. this result gives a partial and positive answer to a conjecture raised by a. r. ashrafi [on finite groups with a given number of centralizers, algebra collo...
متن کاملFinite Groups Have More Conjugacy Classes
We prove that for every > 0 there exists a δ > 0 so that every group of order n ≥ 3 has at least δ log2 n/(log2 log2 n) 3+ conjugacy classes. This sharpens earlier results of Pyber and Keller. Bertram speculates whether it is true that every finite group of order n has more than log3 n conjugacy classes. We answer Bertram’s question in the affirmative for groups with a trivial solvable radical.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2005
ISSN: 1464-3847,0033-5606
DOI: 10.1093/qmath/hah033